Skip to main content

What is PID Controller?

 PID Controllers are widely used in industries nowadays. Although there are inbuilt PID controller functions in the PLC, this functions are used in many applications. Approximately 95% of the closed-loop process in industrial automation sector uses this type of controller.

 PID stands for Proportional-Integral-Derivative. These three controller is combined in such a way that they can control the process as per user defined value.

Let’s take an example to better understand working of PID Controller.

PID Controller


This is a small example of temperature control process using PID controller. We have a furnace here and we want to control the temperature of the furnace. That’s why we have to give some value of temperature that we want to maintain and this value of temperature is called desired value or set value.


Temperature of the furnace we are getting here through a temperature detector, RTD sensor, which is directly connected to PID controller. This is we called a feedback or actual value. This feedback or actual value is compared with the set value and difference between these two signal is our error. PID controller will generate the output based on this comparison and will give output to the control valve.


To maintain the temperature of the furnace, we are controlling here gas flow by a control valve. Position of this control valve is decide here through PID controller output. The response time of the process will merely depend on the three values like Proportional gain, Integral time and derivative time.


 Proportional Control (P-Controller) Mode :

Proportional controller generates the control output proportional to the error. This error value is multiplied with the proportional gain to determine the response of the output.


If the gain is set too high, then the output of the controller begins oscillating and become unstable and if the gain set at very low value then the output of the controller will not respond to the changes of the set value.


The use of a proportional controller alone has a large drawback. The offset is a sustained error and will not be eliminated by using a proportional controller alone.

The speed of the response is increased when the proportional gain increases.

Integral Control (PI-Controller) Mode :

Due to the limitation of a proportional controller, a continuous offset is present. The integral controller will continuously increment and decrements the controller output to reduce the error.


If the error value is large, the integral mode will increment/decrement the controller output fast and if the error value is small, the integral mode will slow the function.


For the large integral time, the speed of the response of the controller will slow, and for the small integral time, the speed of the response will be fast.


Derivative Control (PID-Controller) Mode :

There is a limitation of the I-controller that it can’t predict the future behavior of error. So it reacts only once when there is a change in set value.


The derivative controller generates the output based on the rate of change of error and will work fast then PI controller. If there is no change in the error the output of this controller is zero.


The speed of the response is increased with increment in the derivative time. If the value of the derivative time is too large then oscillation will occur and the system will become unstable. For the zero value of derivative time, the output of the controller will become zero.


Here are some examples where PID-Controller generally used in the industries:


In the above example, we are controlling the flow at a specified value by controlling the position of control valve using the in-built PID function of the PLC.


In the above example, we are controlling the suction pressure at a specified value by controlling the speed of the motor using the in-built PID function of the PLC.

There is a lot more example of PID functions in the automation sector in the industry.

-END-

Comments

Popular posts from this blog

PLC Program for Mixing Tank

 Create a ladder diagram for controlling a batch mixing process. Implement a PLC program for mixing tank or Mixing Process using PLC Ladder Logic. PLC Program for Mixing Tank Fig : Mixing tank A tank is used to mix two liquids. The required control circuit operates as follows: A. When the START button is pressed, solenoids A and B energize. This permits the two liquids to begin filling the tank. B. When the tank is filled, the float switch trips. This de-energizes solenoids A and B and starts the motor used to mix the liquids together. C. The motor is permitted to run for 1 minute. After 1 minute has elapsed, the motor turns off and solenoid C energizes to drain the tank. D. When the tank is empty, the float switch de- energizes solenoid C. E. A STOP button can be used to stop the process at any point. F. If the motor becomes overloaded, the action of the entire circuit will stop. G. Once the circuit has been energized, it will continue to operate until it is manually stopped. Solution : A

What is Relay? How it Works? Types, Applications, Testing

 We use relays for a wide range of applications such as home automation, cars and bikes (automobiles), industrial applications, DIY Projects, test and measurement equipment, and many more. But what is Relay? How a Relay Works? What are the Applications of Relays? Let us explore more about relays in this guide. What is a Relay? A Relay is a simple electromechanical switch. While we use normal switches to close or open a circuit manually, a Relay is also a switch that connects or disconnects two circuits. But instead of a manual operation, a relay uses an electrical signal to control an electromagnet, which in turn connects or disconnects another circuit. Relays can be of different types like electromechanical, solid state. Electromechanical relays are frequently used. Let us see the internal parts of this relay before knowing about it working. Although many different types of relay were present, their working is same. Every electromechanical relay consists of an consists of an Electroma

Chlorine dioxide Analyzer Principle

 Chlorine dioxide measurement Chlorine dioxide (ClO2) is an instable, non-storable, toxic gas with a characteristic scent. The molecule consists of one chlorine atom and two oxygen atoms – represented in the chemical formula ClO2. It is very reactive. To avoid the risk of spontaneous explosions of gaseous chlorine dioxide or concentrated solutions, it is generally handled in dilution with low concentrations. ClO2 is soluble in water, but tends to evaporate quickly. Typically it is prepared on site, for example from hydrochloric acid and sodium chlorite. The procedure provides solutions with approx. 2 g/l ClO2 that can be safely handled and stored for several days. Image Credits : krohne Sensor Parts : Reference electrode Applied chlorine dioxide specific potential Current needed to maintain the constant potential Counter electrode Measuring electrode The disinfection effect of ClO2 is due to the transfer of oxygen instead of chlorine, so that no chlorinated byproducts are formed. ClO2