Skip to main content

Single Push button to ON and OFF a Bulb using Ladder Logic

 Learn how to use Single Push button to ON and OFF a Bulb using Ladder Logic in programmable logic controllers (PLC) control system.

  • I0.0  : Input Push-Button (Normally-Open)
  • Q0.0 : Output Coil (Bulb)
  • Q1.5 & Q1.6 : Flags

Single Push button Ladder Logic

As soon as the push button I0.0 (N-O) is pressed ,it becomes N-C and coil Q1.5 (flag) is energized. The another flag Q1.6 will not energize as the output coil contact  Q0.0 is N-O, which breaks the circuit to the flag Q1.6.


As soon as the flag Q1.5 is energized ,the contact Q1.5 (N-O) becomes N-C and out bulb coil Q0.0 gets energized and bulb becomes ON.


Now, if the push button is released the coil Q0.0 will remain energized because of latching applied as latch contact Q0.0 (N-O) in last rung. To switch off the bulb the push button is again pressed which closes the N-O contact of o/p coil Q0.0 and energizes the flag coil Q1.6.


Due to energize of flag Q1.6 , the N-C contact of this flag in last rung becomes N-O  and as a result of this ,the last rung goes false and output coil Q0.0   is de-energized and bulb goes OFF.


-END-

Comments

Popular posts from this blog

PLC Program for Mixing Tank

 Create a ladder diagram for controlling a batch mixing process. Implement a PLC program for mixing tank or Mixing Process using PLC Ladder Logic. PLC Program for Mixing Tank Fig : Mixing tank A tank is used to mix two liquids. The required control circuit operates as follows: A. When the START button is pressed, solenoids A and B energize. This permits the two liquids to begin filling the tank. B. When the tank is filled, the float switch trips. This de-energizes solenoids A and B and starts the motor used to mix the liquids together. C. The motor is permitted to run for 1 minute. After 1 minute has elapsed, the motor turns off and solenoid C energizes to drain the tank. D. When the tank is empty, the float switch de- energizes solenoid C. E. A STOP button can be used to stop the process at any point. F. If the motor becomes overloaded, the action of the entire circuit will stop. G. Once the circuit has been energized, it will continue to operate until it is manually stopped. Solution...

What is Relay? How it Works? Types, Applications, Testing

 We use relays for a wide range of applications such as home automation, cars and bikes (automobiles), industrial applications, DIY Projects, test and measurement equipment, and many more. But what is Relay? How a Relay Works? What are the Applications of Relays? Let us explore more about relays in this guide. What is a Relay? A Relay is a simple electromechanical switch. While we use normal switches to close or open a circuit manually, a Relay is also a switch that connects or disconnects two circuits. But instead of a manual operation, a relay uses an electrical signal to control an electromagnet, which in turn connects or disconnects another circuit. Relays can be of different types like electromechanical, solid state. Electromechanical relays are frequently used. Let us see the internal parts of this relay before knowing about it working. Although many different types of relay were present, their working is same. Every electromechanical relay consists of an consists of an Elect...

Chlorine dioxide Analyzer Principle

 Chlorine dioxide measurement Chlorine dioxide (ClO2) is an instable, non-storable, toxic gas with a characteristic scent. The molecule consists of one chlorine atom and two oxygen atoms – represented in the chemical formula ClO2. It is very reactive. To avoid the risk of spontaneous explosions of gaseous chlorine dioxide or concentrated solutions, it is generally handled in dilution with low concentrations. ClO2 is soluble in water, but tends to evaporate quickly. Typically it is prepared on site, for example from hydrochloric acid and sodium chlorite. The procedure provides solutions with approx. 2 g/l ClO2 that can be safely handled and stored for several days. Image Credits : krohne Sensor Parts : Reference electrode Applied chlorine dioxide specific potential Current needed to maintain the constant potential Counter electrode Measuring electrode The disinfection effect of ClO2 is due to the transfer of oxygen instead of chlorine, so that no chlorinated byproducts are formed. C...