Skip to main content

How to Convert Current to Voltage using Resistor ?

 In this article, we discuss about How to Convert Current to Voltage using Resistor with different examples like 0-20 mA to 0-10 VDC Conversion, 4-20 mA to 2-10 VDC Conversion, 0-20 mA to 0-5 VDC Conversion.

Convert Current to Voltage

It is extremely simple to measure 0-20 mA signal with a device that will measure only Voltage inputs. If the Voltage input module available will accept a 0-10 Vdc signal, but may not accept a 0-20ma signal directly.

Basically, Ohms law is used to calculate a resistor value in order to convert the 0-20ma signal to a voltage.

Example : 0-20 mA to 0-10 VDC Conversion
Ohms law states: R = V/I where V is the Voltage, I is the current and R is the resistance

R = 10V/0.020A = 500 Ohms
V = I*R = 0*500 = 0V
 
V = I*R = 0.020*500 = 10V

Example : 4-20 mA to 2-10 VDC Conversion
Ohms law states: R = V/I where V is the Voltage, I is the current and R is the resistance 

R = 10V/0.020A = 500 Ohms
V = I*R = 0.004*500 = 2V
V = I*R = 0.020*500 = 10V

Example : 0-20 mA to 0-5 VDC Conversion

Ohms law states: R = V/I where V is the Voltage, I is the current and R is the resistance 

R = 5V/0.020A = 250 Ohms

V = I*R = 0*250        = 0V

V = I*R = 0.020*250 = 5V

Note:-

  • To avoid damage you must ensure that the external current source has short-circuit protection in all conductor cases.
  • The external resistor is a source of error because of its dependency on temperature and its inaccuracy.
  • In order to obtain measuring results that are as precise as possible it is recommended to use resistors with tolerances that are as small as possible.
Credits : myplctechnology blog

-END-

Comments

Popular posts from this blog

PLC Program for Mixing Tank

 Create a ladder diagram for controlling a batch mixing process. Implement a PLC program for mixing tank or Mixing Process using PLC Ladder Logic. PLC Program for Mixing Tank Fig : Mixing tank A tank is used to mix two liquids. The required control circuit operates as follows: A. When the START button is pressed, solenoids A and B energize. This permits the two liquids to begin filling the tank. B. When the tank is filled, the float switch trips. This de-energizes solenoids A and B and starts the motor used to mix the liquids together. C. The motor is permitted to run for 1 minute. After 1 minute has elapsed, the motor turns off and solenoid C energizes to drain the tank. D. When the tank is empty, the float switch de- energizes solenoid C. E. A STOP button can be used to stop the process at any point. F. If the motor becomes overloaded, the action of the entire circuit will stop. G. Once the circuit has been energized, it will continue to operate until it is manually stopped. Solution...

What is Relay? How it Works? Types, Applications, Testing

 We use relays for a wide range of applications such as home automation, cars and bikes (automobiles), industrial applications, DIY Projects, test and measurement equipment, and many more. But what is Relay? How a Relay Works? What are the Applications of Relays? Let us explore more about relays in this guide. What is a Relay? A Relay is a simple electromechanical switch. While we use normal switches to close or open a circuit manually, a Relay is also a switch that connects or disconnects two circuits. But instead of a manual operation, a relay uses an electrical signal to control an electromagnet, which in turn connects or disconnects another circuit. Relays can be of different types like electromechanical, solid state. Electromechanical relays are frequently used. Let us see the internal parts of this relay before knowing about it working. Although many different types of relay were present, their working is same. Every electromechanical relay consists of an consists of an Elect...

Chlorine dioxide Analyzer Principle

 Chlorine dioxide measurement Chlorine dioxide (ClO2) is an instable, non-storable, toxic gas with a characteristic scent. The molecule consists of one chlorine atom and two oxygen atoms – represented in the chemical formula ClO2. It is very reactive. To avoid the risk of spontaneous explosions of gaseous chlorine dioxide or concentrated solutions, it is generally handled in dilution with low concentrations. ClO2 is soluble in water, but tends to evaporate quickly. Typically it is prepared on site, for example from hydrochloric acid and sodium chlorite. The procedure provides solutions with approx. 2 g/l ClO2 that can be safely handled and stored for several days. Image Credits : krohne Sensor Parts : Reference electrode Applied chlorine dioxide specific potential Current needed to maintain the constant potential Counter electrode Measuring electrode The disinfection effect of ClO2 is due to the transfer of oxygen instead of chlorine, so that no chlorinated byproducts are formed. C...