Skip to main content

How to Wire a Field instrument to Control Room with Example

 Few factors are to be considered or taken care of while wiring a field instrument to control panel.

  • Noise Susceptibility Limit
  • Grounding of the signal cable
  • Type of cable
  • Cable Terminations

Based on noise susceptibility limits (NSL) according to IEEE 815 standard, various field instrument signals are classified as below.

Level 1: High to medium susceptibility

Level 2: Low susceptibility

Level 3: Power AC and DC buses

Level 1

High noise susceptibility level to the medium level: Analog signals of less than 50 V and discrete instrument signals of less than 30 V.

Examples of these signals are:

  • Foundation Fieldbus
  • 4-20 mA and 4-20 mA with HART
  • RTD
  • Thermocouple
  • Millivolt/pulse

Discrete input and output signals. Example: pressure switches, valve position’s limit switches, indicating lights, relays, solenoid coils.

All wiring connected to components related to sensitive analog hardware like strain gauges.

Level 2:

Low susceptibility: Switching signals of greater than 30 V. Analog signals greater than 50 V, and 120-240 AC feeders rated less than 20A.

Examples:

Discrete input and Discrete output DC signals like pressure switches, valve position’s limit switches, indicating lights, relays, solenoid coils.

Discrete input and Discrete output AC signals including pressure switches, valve position’s limit switches, indicating lamps/lights, relays, solenoids coils.

20-240 AC feeders of less than 20 amps

Level 3:

Power AC and DC buses: 0-1000 V with currents of 20-800 amps.

Signal segregation In instrumentation cabling, it is a very useful practice to segregate various signals from one another.

For the finest optimum segregation, each kind of signal (within each noise susceptibility level NSL) shall transmit on exclusively dedicated cables and rout to dedicated junction boxes. 

For example, all 4-20 mA signals shall rout on separate cables from all other signals under Noise Susceptibility Limit -1. The same applies to all other signal types. From the junction boxes to the control room, the cables for every Noise Susceptibility (NSL) level can share the identical cable tray or trench.

The separation distance between NSL-1 and NSL-2 and strong electromagnetic interference such as motors, generators, transformers above 100 KVA shall be at least two meters.

The separation distance between NSL-1 and NSL-2 and power cables rated above NSL-3 should be at least 1 to 1.5 meters.

Besides, all emergency shutdown (ESD) signals should have their Own cables, junction boxes, and also marshaling cabinets. They also have to be segregated based on the signal type as discussed cases above.

It is common to use twisted pair wire when wiring process instrumentation. when two wires are twisted together, many of the electromagnetic interferences are canceled out, so twisted pair wiring is more proof against electrical noise than untwisted wiring.

To add another level of protection from the electromagnetic noise is a ground shield is added over the twisted pair cable.

Field interface multi-core cables connected to junction boxes in the field, transmitting conventional 4-20 mA signals from all sorts of field transmitters, individually, are going to be connected to marshaling racks.

From the marshaling cabinet racks, the signals are going to be connected to the I/O cards of the DCS and ESD system cabinets through pre-fab cables.

Wiring Diagram of Field Instruments in Control Room

In the following figure below there are various types of field instruments connected to the control room via a field junction box.

A close picture of the connection from a starting point to the destination is shown in it.

Instrument signals can be carried by wiring with a conductor size of at least 18 AWG is recommended. Selecting conductors of 18awg or larger increases the reliability and makes connections easier.

Insulation should be high-quality thermoplastic rated for the voltage to be used ( max 30 V). The standard colors for two-conductor instrumentation cables ar red (+ve) and black (-Ve). Other colors are also available.

The cable jacket should be rated for the proposed use and instrument cable is available for all of the common general uses (e.g. conduit, tray, outdoors, direct burial, etc.).

Also, be sure the jacket is unaffected by any chemicals or oils that it may encounter. If the cable is to be run in conduit, make sure the jacket is of the smooth one. The soft, rubbery jackets make pulling difficult and might result in cable damage.

-EDN-


Comments

Popular posts from this blog

PLC Program for Mixing Tank

 Create a ladder diagram for controlling a batch mixing process. Implement a PLC program for mixing tank or Mixing Process using PLC Ladder Logic. PLC Program for Mixing Tank Fig : Mixing tank A tank is used to mix two liquids. The required control circuit operates as follows: A. When the START button is pressed, solenoids A and B energize. This permits the two liquids to begin filling the tank. B. When the tank is filled, the float switch trips. This de-energizes solenoids A and B and starts the motor used to mix the liquids together. C. The motor is permitted to run for 1 minute. After 1 minute has elapsed, the motor turns off and solenoid C energizes to drain the tank. D. When the tank is empty, the float switch de- energizes solenoid C. E. A STOP button can be used to stop the process at any point. F. If the motor becomes overloaded, the action of the entire circuit will stop. G. Once the circuit has been energized, it will continue to operate until it is manually stopped. Solution : A

What is Relay? How it Works? Types, Applications, Testing

 We use relays for a wide range of applications such as home automation, cars and bikes (automobiles), industrial applications, DIY Projects, test and measurement equipment, and many more. But what is Relay? How a Relay Works? What are the Applications of Relays? Let us explore more about relays in this guide. What is a Relay? A Relay is a simple electromechanical switch. While we use normal switches to close or open a circuit manually, a Relay is also a switch that connects or disconnects two circuits. But instead of a manual operation, a relay uses an electrical signal to control an electromagnet, which in turn connects or disconnects another circuit. Relays can be of different types like electromechanical, solid state. Electromechanical relays are frequently used. Let us see the internal parts of this relay before knowing about it working. Although many different types of relay were present, their working is same. Every electromechanical relay consists of an consists of an Electroma

Chlorine dioxide Analyzer Principle

 Chlorine dioxide measurement Chlorine dioxide (ClO2) is an instable, non-storable, toxic gas with a characteristic scent. The molecule consists of one chlorine atom and two oxygen atoms – represented in the chemical formula ClO2. It is very reactive. To avoid the risk of spontaneous explosions of gaseous chlorine dioxide or concentrated solutions, it is generally handled in dilution with low concentrations. ClO2 is soluble in water, but tends to evaporate quickly. Typically it is prepared on site, for example from hydrochloric acid and sodium chlorite. The procedure provides solutions with approx. 2 g/l ClO2 that can be safely handled and stored for several days. Image Credits : krohne Sensor Parts : Reference electrode Applied chlorine dioxide specific potential Current needed to maintain the constant potential Counter electrode Measuring electrode The disinfection effect of ClO2 is due to the transfer of oxygen instead of chlorine, so that no chlorinated byproducts are formed. ClO2