Skip to main content

How to do Scaling for Analog Input in RSLogix 500?

 Learn analog input scaling methods in RSLogix 500 software using Scale with parameters (SCP) and Scale (SCL) instructions.

Analog inputs provide a way for us to understand the real-time parameters of the environment around.

Example: Temperature of the surrounding, Humidity in air, Moisture in the air, level of the water in a tank, and speed of the flow of fluids in a plant.

So all these parameters are going to be in a specific unit.

Example: level in liters, pressure in bar, the temperature in degree celsius, and etc.

But all the sensors we use to measure those parameters provide a variable voltage as output that is called Analog inputs to our Automation system.

Each sensor has a specific range of output which you can refer to the sensor manual.

Consider a sensor whose output range is 0 to 10v.

0v being the least and 10v being the maximum value of the sensor measured parameter.

But these values cannot be read into PLC as they occur. All the values that a controller reads will be in digital.

Scaling Analog Input RSLogix 500

For example, an Electronic system reads the number 15 as “1111”.

In this way, Allen Bradley PLC’s read analog voltage values from 0v  to 10v as 0 to 4000.

This will be the read digital value by our PLC.

0v <- – – – – – – – – -> 0

2.5v <- – – – – – – -> 1000

5v  <- – – – – – – – -> 2000

7.5v <- – – – – – – -> 3000

10v <- – – – – – – – > 4000

However, we want to scale those values accurately to see exactly how much voltage the analog sensor is outputting.

Then we can use the specific unit conversion formulas to display the exact value of the parameter we are measuring.

There are two methods to scale an analog input in RSLogix 500,

Scale with parameters (SCP)

Scale (SCL)

Scale with Parameters (SCP)

In scale with parameters (SCP), there are the following specifics to be mentioned,

  1. Input – where you have to give the address of the input which is acquiring the analog sensor’s output voltage.
  2. Input Min – where you have to specify the minimum digital value received. In this case, our minimum value is 0.
  3. Input max – where you have to specify the maximum digital value received. In this case, our maximum value is 4000.
  4. Scaled Min – Where you have to specify the minimum value of the range you want to scale. In this case, our scaled minimum is 0v.
  5. Scaled Max – where you have to specify the maximum value of the range you want to scale. In this case, our scaled maximum is 10v.
  6. Output – where you have to give an address to output the scaled value. You can give a float or integer address in here. However, Float will give you the most accurately scaled value.
Scale (SCL)
In scale (SCL) there are the following specifics to be mentioned,

  1. Source – where you have to specify the source address where the analog value is read.
  2. Rate – Here is the formula for it  Rate = (scaled max. – scaled min.) /  (input max. – input min.) in our case the value of rate will be 0.0025.
  3. Offset- whenever your sensor output value is wrong and it displays 6v in the place of 7v you can add  1 to offset to correct the error.
  4. Dest – The same as before, here you can give a float or integer address to save the scaled value.
  5. This will be the formula for scaled output.  Scaled value = (input value x rate) + offset

END

Comments

Popular posts from this blog

PLC Program for Mixing Tank

 Create a ladder diagram for controlling a batch mixing process. Implement a PLC program for mixing tank or Mixing Process using PLC Ladder Logic. PLC Program for Mixing Tank Fig : Mixing tank A tank is used to mix two liquids. The required control circuit operates as follows: A. When the START button is pressed, solenoids A and B energize. This permits the two liquids to begin filling the tank. B. When the tank is filled, the float switch trips. This de-energizes solenoids A and B and starts the motor used to mix the liquids together. C. The motor is permitted to run for 1 minute. After 1 minute has elapsed, the motor turns off and solenoid C energizes to drain the tank. D. When the tank is empty, the float switch de- energizes solenoid C. E. A STOP button can be used to stop the process at any point. F. If the motor becomes overloaded, the action of the entire circuit will stop. G. Once the circuit has been energized, it will continue to operate until it is manually stopped. Solution...

What is Relay? How it Works? Types, Applications, Testing

 We use relays for a wide range of applications such as home automation, cars and bikes (automobiles), industrial applications, DIY Projects, test and measurement equipment, and many more. But what is Relay? How a Relay Works? What are the Applications of Relays? Let us explore more about relays in this guide. What is a Relay? A Relay is a simple electromechanical switch. While we use normal switches to close or open a circuit manually, a Relay is also a switch that connects or disconnects two circuits. But instead of a manual operation, a relay uses an electrical signal to control an electromagnet, which in turn connects or disconnects another circuit. Relays can be of different types like electromechanical, solid state. Electromechanical relays are frequently used. Let us see the internal parts of this relay before knowing about it working. Although many different types of relay were present, their working is same. Every electromechanical relay consists of an consists of an Elect...

Chlorine dioxide Analyzer Principle

 Chlorine dioxide measurement Chlorine dioxide (ClO2) is an instable, non-storable, toxic gas with a characteristic scent. The molecule consists of one chlorine atom and two oxygen atoms – represented in the chemical formula ClO2. It is very reactive. To avoid the risk of spontaneous explosions of gaseous chlorine dioxide or concentrated solutions, it is generally handled in dilution with low concentrations. ClO2 is soluble in water, but tends to evaporate quickly. Typically it is prepared on site, for example from hydrochloric acid and sodium chlorite. The procedure provides solutions with approx. 2 g/l ClO2 that can be safely handled and stored for several days. Image Credits : krohne Sensor Parts : Reference electrode Applied chlorine dioxide specific potential Current needed to maintain the constant potential Counter electrode Measuring electrode The disinfection effect of ClO2 is due to the transfer of oxygen instead of chlorine, so that no chlorinated byproducts are formed. C...