Skip to main content

What is Cavitation? What are the Causes?

 Cavitation is an applied science that has not evolved to the highly refined level that supporting the more traditional control valve sizing calculations.

However, there is a great need by users and manufacturers alike for practical information in this area.

Cavitation Definition

The definition of cavitation is given as a two-stage process associated with the flow of liquids.

The first stage involves the formation of vapour cavities or bubbles in the flow stream as a result of the local static pressure in the flow stream dropping below the liquid vapour pressure.


The second stage of the process is the subsequent collapse or implosion of the vapour cavities back to the liquid state when the local static pressure again becomes greater than the fluid vapour pressure.

Cavitation is a phenomenon that can accompany the flow of liquids through control valves. Failure to account for cavitation can result in potentially costly performance problems.

To prevent this situation, it is important that personnel responsible for control valve specifications understand the nature of cavitation and fundamental abatement technology.

Familiarity with this material is encouraged. Successful solutions to cavitation problems still rely heavily on engineering judgments stemming from insight into cavitation basics.

Simply viewed, cavitation consists of the formation, growth, and rapid collapse of cavities in a liquid. These vapour cavities (bubbles) are formed whenever the prevailing fluid pressure falls below the vapor pressure of the liquid. They subsequently collapse if the pressure again rises above the vapor pressure.

Causes of Cavitation
Different specific sources of pressure changes cause cavitation, but they all arise from the flow of the liquid through the control valve. Cavitation usually begins in the low-pressure regions associated with boundary layer separation.

This may occur even though the mean pressure is greater than the vapor pressure. Mean pressure (the average static pressure in the plane perpendicular to the flow path) will decrease as the liquid passes through the various restrictions in the valve trim. The degree and extent of cavitation escalate when the mean pressure falls below the vapor pressure in these regions.

Unacceptable noise levels, excessive vibrations, and physical damage to the valve and adjacent hardware are the foremost problems associated with cavitation. These problems all arise from the collapse of the vapor cavities. Material damage results from shock waves and micro-jets, established during cavity collapse, impinging on the boundary surfaces.


 
Corrosion further aggravates these mechanical attack mechanisms. The physical appearance of cavitation damage varies from a “frosted glass” appearance to a rough, cinder-like surface texture.

Another “side effect” of cavitation is an apparent decrease in the efficiency of the valve. The compressibility introduced to the fluid when a portion of the liquid vaporizes can ultimately lead to a choked flow condition similar to a flashing fluid.

While treated simply in this section, cavitation is a very complex sequence of events. Not all cavitation necessarily results in the problems mentioned above. However, attempts to model the behaviour of the cavitating liquid have not met with universal success. Distinguishing “problem causing” cavitation from acceptable behaviour presents some very real challenges.

Historically, the control valve industry has adopted the practice of describing cavitation applications in terms of a single, unadjusted parameter. In this approach, the suitability of a given control valve is determined by comparing the value of this parameter evaluated at operating conditions to an “operating limit” for that control valve.

While appealing from a user standpoint, the approach described above suffers from some major drawbacks. First, the definition of the parameter and the manner in which it is used have varied significantly from manufacturer to manufacturer. While the principle underlying the method is basically the same, the differences in appearance lead to much confusion.

Furthermore, the complexity of cavitation renders it difficult to predict the exact behaviour in any given service on the basis of a single, unadjusted parameter. Many service factors can affect the apparent level of cavitation. Unfortunately, no currently known model fully describes the intensity or extent of cavitation under universally varying conditions regardless of the number of parameters employed.

The operating limit used as the basis for comparison has, in many instances, being equal to the value of the pressure recovery factor, FL. If a valve is operated at the limit defined by the pressure recovery factor, the valve is at or near choked flow conditions. Substantial vapor has been formed in the flow stream, and significant levels of cavitation can exist.

As discussed elsewhere, using FL in this manner is not a universally correct solution and is, in general, valid only for specially designed valve trims. The vast majority of valves cannot operate problem-free under this condition.

Levels of Cavitation
The different levels of cavitation are as follows:

  1. Incipient cavitation
  2. Constant cavitation
  3. Incipient damage
  4. Choking cavitation; and
Maximum vibration cavitation.
These various levels are a strong function of the internal geometry of the control valve. It can be expected that different values of any given cavitation coefficient will be associated with different valve styles or even different openings of the same valve.


Comments

Popular posts from this blog

PLC Program for Mixing Tank

 Create a ladder diagram for controlling a batch mixing process. Implement a PLC program for mixing tank or Mixing Process using PLC Ladder Logic. PLC Program for Mixing Tank Fig : Mixing tank A tank is used to mix two liquids. The required control circuit operates as follows: A. When the START button is pressed, solenoids A and B energize. This permits the two liquids to begin filling the tank. B. When the tank is filled, the float switch trips. This de-energizes solenoids A and B and starts the motor used to mix the liquids together. C. The motor is permitted to run for 1 minute. After 1 minute has elapsed, the motor turns off and solenoid C energizes to drain the tank. D. When the tank is empty, the float switch de- energizes solenoid C. E. A STOP button can be used to stop the process at any point. F. If the motor becomes overloaded, the action of the entire circuit will stop. G. Once the circuit has been energized, it will continue to operate until it is manually stopped. Solution...

What is Relay? How it Works? Types, Applications, Testing

 We use relays for a wide range of applications such as home automation, cars and bikes (automobiles), industrial applications, DIY Projects, test and measurement equipment, and many more. But what is Relay? How a Relay Works? What are the Applications of Relays? Let us explore more about relays in this guide. What is a Relay? A Relay is a simple electromechanical switch. While we use normal switches to close or open a circuit manually, a Relay is also a switch that connects or disconnects two circuits. But instead of a manual operation, a relay uses an electrical signal to control an electromagnet, which in turn connects or disconnects another circuit. Relays can be of different types like electromechanical, solid state. Electromechanical relays are frequently used. Let us see the internal parts of this relay before knowing about it working. Although many different types of relay were present, their working is same. Every electromechanical relay consists of an consists of an Elect...

Chlorine dioxide Analyzer Principle

 Chlorine dioxide measurement Chlorine dioxide (ClO2) is an instable, non-storable, toxic gas with a characteristic scent. The molecule consists of one chlorine atom and two oxygen atoms – represented in the chemical formula ClO2. It is very reactive. To avoid the risk of spontaneous explosions of gaseous chlorine dioxide or concentrated solutions, it is generally handled in dilution with low concentrations. ClO2 is soluble in water, but tends to evaporate quickly. Typically it is prepared on site, for example from hydrochloric acid and sodium chlorite. The procedure provides solutions with approx. 2 g/l ClO2 that can be safely handled and stored for several days. Image Credits : krohne Sensor Parts : Reference electrode Applied chlorine dioxide specific potential Current needed to maintain the constant potential Counter electrode Measuring electrode The disinfection effect of ClO2 is due to the transfer of oxygen instead of chlorine, so that no chlorinated byproducts are formed. C...