Skip to main content

Servo Level Transmitter Principle

 Servo Level Transmitter Principle


A very thin measuring wire B is wound onto measuring drum C having a certain length of precisely machined spiral groove.

Measuring drum C is connected to Driving shaft F through magnet coupling D, E and rotates forward and backward according to movement of gear-down unit J, K and stepping motor N. A worm gear J, which is located on the same axis as Driving shaft F, is connected to Driving shaft F through Spring I.

By this arrangement, tension onto Measuring wire B can be precisely detected by measuring distortion of Spring I by Balancer G. A Displacer A, of which density is higher than that of liquid to be measured, is connected to one end of Measuring wire B. The weight of Displacer A always gives downforce tension to Driving shaft F. In normal measurement condition, Stepping motor N is controlled by signal from Balancer G to give Measuring wire B a slightly less and constant tension than the weight of Displacer A. In this way, Displacer A always follows liquid surface with stable draft line.

Thus, rotating angle of Measuring drum C which corresponds to length of unwound Measuring wire B represents height of liquid in tank.

By adjusting the control level of tension T onto measuring wire B, interface of two liquids having different density can also be measured. Also, by sinking displacer into liquid and measuring the tension T onto measuring wire B, the liquid density can be detected and measured.

The  signal from Balancer G is either fully digitalized or a 4-20mA signal output. Stepper motor N, having high resolution, is controlled by Microprocessor unit H. This digitized servo operation system offers high liquid following capability and stability in operation compared to existing analog control method.

The angle of Measuring drum rotation is obtained from the number of steps of Stepper Motor N. This remarkably improves the resolution of liquid level measurement of 0.1 mm.

Source : tokyokeiso.co.jp


Comments

Popular posts from this blog

PLC Program for Mixing Tank

 Create a ladder diagram for controlling a batch mixing process. Implement a PLC program for mixing tank or Mixing Process using PLC Ladder Logic. PLC Program for Mixing Tank Fig : Mixing tank A tank is used to mix two liquids. The required control circuit operates as follows: A. When the START button is pressed, solenoids A and B energize. This permits the two liquids to begin filling the tank. B. When the tank is filled, the float switch trips. This de-energizes solenoids A and B and starts the motor used to mix the liquids together. C. The motor is permitted to run for 1 minute. After 1 minute has elapsed, the motor turns off and solenoid C energizes to drain the tank. D. When the tank is empty, the float switch de- energizes solenoid C. E. A STOP button can be used to stop the process at any point. F. If the motor becomes overloaded, the action of the entire circuit will stop. G. Once the circuit has been energized, it will continue to operate until it is manually stopped. Solution : A

What is Relay? How it Works? Types, Applications, Testing

 We use relays for a wide range of applications such as home automation, cars and bikes (automobiles), industrial applications, DIY Projects, test and measurement equipment, and many more. But what is Relay? How a Relay Works? What are the Applications of Relays? Let us explore more about relays in this guide. What is a Relay? A Relay is a simple electromechanical switch. While we use normal switches to close or open a circuit manually, a Relay is also a switch that connects or disconnects two circuits. But instead of a manual operation, a relay uses an electrical signal to control an electromagnet, which in turn connects or disconnects another circuit. Relays can be of different types like electromechanical, solid state. Electromechanical relays are frequently used. Let us see the internal parts of this relay before knowing about it working. Although many different types of relay were present, their working is same. Every electromechanical relay consists of an consists of an Electroma

Chlorine dioxide Analyzer Principle

 Chlorine dioxide measurement Chlorine dioxide (ClO2) is an instable, non-storable, toxic gas with a characteristic scent. The molecule consists of one chlorine atom and two oxygen atoms – represented in the chemical formula ClO2. It is very reactive. To avoid the risk of spontaneous explosions of gaseous chlorine dioxide or concentrated solutions, it is generally handled in dilution with low concentrations. ClO2 is soluble in water, but tends to evaporate quickly. Typically it is prepared on site, for example from hydrochloric acid and sodium chlorite. The procedure provides solutions with approx. 2 g/l ClO2 that can be safely handled and stored for several days. Image Credits : krohne Sensor Parts : Reference electrode Applied chlorine dioxide specific potential Current needed to maintain the constant potential Counter electrode Measuring electrode The disinfection effect of ClO2 is due to the transfer of oxygen instead of chlorine, so that no chlorinated byproducts are formed. ClO2