Skip to main content

Displacer Level Measurement Calculations

 Displacer Level Measurement Calculations

Problem 1 :-

A steel displacer of volume 0.25 cubic feet is 50% immersed in oil of relative density 0.78;

the density of steel = 490 lbs per cubic foot

the density of water = 63 × lbs per cubic foot

Calculate the apparent weight of the displacer.

true weight of displacer = 0.25 × 490 = 122.5 lbs

volume of oil displaced = 0.25 × 0.5 = 0.125 cubic feet

weight of oil displaced = (0.125 × 0.78 × 63) lbs = 6.143 lbs

∴ Apparent weight of displacer = true weight − displaced weight

Apparent weight of displacer = 122.5 − 6.143 lbs = 116.36 lbs

Problem 2 :-

A steel displacer of volume 0.1 cubic feet is to be used as a level sensor in a vessel to store water.
Calculate the following;
1:- the maximum and minimum weights of the displacer.
2:- the maximum range of level able to be sensed, if the diameter of the displ. is 2 inch.
true weight of displacer = 0.1 × 490 lbs = 49 lbs

volume of water displaced = 0.1 cubic feet

weight of water displaced = 0.1 × 63 lbs = 6.3 lbs

∴ min. weight of the displacer = 49 − 6.3 lbs = 42.7 lbs

∴ max. weight of the displacer = 49 lbs

volume of the sensor = πr2L

Note : π = 3.142, 1 in = 1/12 ft = 0.0833ft

volume of the sensor ⇒ 0.1 ft3 = 3.142 × (0.0833)2 × L

0.1 ft3 = 0.0218 × L

hence, the length of displacer, L = 0.1 / 0.0218 = 4.587 ft , or 55 inches

Problem 3 :-

A steel displacer 1 metre long, and volume of 1000 CCs. is to be used to measure the interface level in an oil and water separator. The SG of oil is 0.78, the density of water is 1 kg/litre. Density of steel is 8000 kg per cubic meter.
Find,
1:- the diameter of the displacer.
2:- the displacer weight in air, oil & water.
3:- the “0%” and “100%” weights, if the 50% interface level is set at the displacer’s mid-point, and the span is 0.5 metres.
The displacer is assumed to be totally covered with oil or water.
volume of the sensor = πr2L

1000 c.c.s = 3.142 × r2 × 100 cm

thus, we now have, r2 =  1000 / (3.142 x 100 ) = 3.183 cm2

∴ the radius of displacer, r = Sqrt (3.183) cm = 1.78 cm

hence, the diameter of displacer = 1.78 × 2 cm = 3.56 cm

displacer’s weight in air = density × volume

Note that volume unit has to be inconsistent with density unit 1 ccs = 10−6 m3

= 8000 kgm−3 × (1×103/106) m3  = 8.0 kg

displacer’s weight in oil = (weight in air) − (weight loss in oil)

= 8.0 – (0.5 × 1 × 0.78) kg = 7.61 kg

displacer’s weight in water = (weight in air) − (weight loss in water)

= 8.0 – (0.5 × 1 × 1) kg = 7.50 kg

at 0% interface level, the displacer’s length will be covered 25% with water and 75% with oil. Hence, the displacer’s total weight will be made up of 75% of its weight in oil and 25% weight in water;

∴ displacer weight at 0% = (0.75 × 7.61) + (0.25 × 7.5) = 7.582 kg

at 50%, the displacer’s total weight will be made up of 50% weight in water, and 50% weight in oil;

∴ displacer weight at 50% = (0.5 × 7.61) + (0.5 × 7.5) = 7.555 kg

at 100%, the displacer’s total weight will be made up of 75% weight in water, and 25% weight in oil;

∴ displacer weight at 50% = (0.25 × 7.61) + (0.75 × 7.5) = 7.527 kg

Article Source : N. Asyiddin






Comments

Popular posts from this blog

Ferrules and Cross Ferruling

 Ferrules are identification labels provided for every wire terminations in an instrument, equipment, or electrical/instrumentation control panels. These tube-shaped sleeves can be inserted easily on each individual wire in a multi-core cable. In earlier days fixed digits/letters are used as ferrules, but now Instrumentation engineers/technicians prints out desired ferrules by using a ferrule printing machine. Typical Ferrule The numbers/ letters on the ferrules will be given as per the approved electrical hook up or loop diagrams. This helps technicians to easily identify a particular loop/wiring from a series of terminal blocks and to troubleshoot the desired terminal connection. Separate numbers on the ferrules distinguish the positive and negative polarities of wires, thus ensure the polarity protection of the instrument. Cross Ferruling  As a wire is connected on its both ends, it is quite useful to use a cross reference method for wire identification. Unlike normal ferru...

What is a Torbar? – Averaging Pitot Tubes

 The Torbar is employed for flow measurement of liquids, gases, or steam in circular, square, or rectangular section ducts for large flow rates. The Torbar is an insertion type multi-port self-averaging primary sensor for flow measurement. Torbar TORBAR is a set of Pitot tubes mounted on a bar across the pipeline with no moving parts. An averaging Pitot tube is a technology, while TORBAR is a manufacturing brand name. There are several brands available in the market with VERABAR, ANNUBAR, etc. Averaging Pitot Tube Principle Purpose Averaging Pitot tube can be employed when the average velocity of the flow profile, rather than the velocity in a specific point in the cross-section is desired. Averaging Pitot Tubes Principle It measures the differential pressure between the static pressure tap and the tap of full pressure of a stream. Thus such magnitude of differential pressure is directly proportional to the square of the flow rate. Working The TORBAR is designed in such a way that ...

Dissolved Oxygen Analyzer Working Principle

 What is dissolved oxygen ? Dissolved oxygen refers to oxygen dissolved in water. Its concentration is expressed as the amount of oxygen per unit volume and the unit is mg/L. Biologically, oxygen is an essential element for respiration of underwater life and also acts as a chemical oxidizer. The solubility of oxygen in water is affected by water temperature, salinity, barometric pressure, etc. and decreases as water temperature rises. Measurement of dissolved oxygen by the membrane electrode method The membrane electrode method measures a diffusion current or reduction current generated by the concentration of dissolved oxygen or partial pressure of oxygen to obtain the concentration of dissolved oxygen. This method is not affected by the pH value of water being measured, oxidation and reduction substances, color, turbidity, etc. and the measurement method offers good reproducibility. When a sensor is inserted into water, an air layer forms on the membrane (Teflon membrane). The ox...