Skip to main content

Capacitance Level Measurement Working Principle

 Capacitance Level Measurement:

Capacitive level transducer is an example of indirect measurement of level


Capacitance level sensors are used for wide variety of solids, aqueous and organic liquids, and slurries. The technique is frequently referred  as RF as radio frequency signals applied to the capacitance circuit. The sensors can be designed to sense material with dielectric constants as low as 1.1 (coke and fly ash) and as high as 88 (water) or more. Sludges and slurries such as dehydrated cake and sewage slurry (dielectric constant approx. 50) and liquid chemicals such as quicklime (dielectric constant approx. 90) can also be sensed. Dual-probe capacitance level sensors can also be used to sense the interface between two immiscible liquids with substantially different dielectric constants.

Since capacitance level sensors are electronic devices, phase modulation and the use of higher frequencies makes the sensor suitable for applications in which dielectric constants are similar.

Working Principle:

The principle of capacitive level measurement is based on change of capacitance. An insulated electrode acts as one plate of capacitor and the tank wall (or reference electrode in a non-metallic vessel) acts as the other plate. The capacitance depends on the fluid level. An empty tank has a lower capacitance while a filled tank has a higher capacitance.

 A simple capacitor consists of two electrode plate separated by a small thickness of an insulator such as solid, liquid, gas, or vacuum. This insulator is also called as dielectric.

Value of C depends on dielectric used, area of the plate and also distance between the plates.
Where:

C = capacitance in picofarads (pF)

E = a constant known as the absolute permittivity of free space

K = relative dielectric constant of the insulating material

A = effective area of the conductors

d = distance between the conductors

This change in capacitance can be measured using AC bridge.

Measurement:

 Measurement is made by applying an RF signal between the conductive probe and the vessel wall.

The RF signal results in a very low current flow through the dielectric process material in the tank from the probe to the vessel wall. When the level in the tank drops, the dielectric constant drops causing  a drop in the capacitance reading and a minute drop in current flow.

This change is detected by the level switch’s internal circuitry and translated into a change in the relay state of the level switch in case of point level detection.

In the case of continuous level detectors, the output is not a relay state, but a scaled analog signal.

 Level Measurement can be divided into three categories:

  • Measurement of non-conductive material
  • Measurement of conductive material
  • Non-contact measurement
  • Non-conducting material:

For measuring level of non conducting liquids, bare probe arrangement is used as liquid resistance is sufficiently high to make it dielectric. Since the electrode and tank are fixed in place, the distance (d) is constant, capacitance is directly proportional to the level of the material  acting as dielectric.

Conducting Material:

In conducting liquids, the probe plates are insulated using thin coating of glass or plastic to avoid short circuiting. The conductive material acts as the ground plate of the capacitor.

Proximity measurements (Non-contact type measurements):

In Proximity level measurement is  the area of the capacitance plates is fixed, but distance between plates varies.

Proximity level measurement does not produce a linear output and are used when the level varies by several inches.

Advantages of Capacitive level measurement:

  • Relatively inexpensive
  • Versatile
  • Reliable
  • Requires minimal maintenance
  • Contains no moving parts
  • Easy to install and can be adapted easily for different size of vessels
  • Good range of measurement, from few cm to about 100 m
  • Rugged
  • Simple to use
  • Easy to clean
Can be designed for high temperature and pressure applications.
 Applications:

Capacitance Level Probes are used for measuring level of

Liquids
  • Powered and granular solids
  • Liquid metals at very high temperature
  • Liquefied gases at very low temperature
  • Corrosive materials like hydrofluoric acid
  • Very high pressure industrial processes.
Disadvantages:

Light density materials under 20 lb/ft3 and materials with particle sizes exceeding 1/2 in. in diameter can be a problem due to their very low dielectric constants (caused by the large amount of air space between particles).



Comments

Popular posts from this blog

PLC Program for Mixing Tank

 Create a ladder diagram for controlling a batch mixing process. Implement a PLC program for mixing tank or Mixing Process using PLC Ladder Logic. PLC Program for Mixing Tank Fig : Mixing tank A tank is used to mix two liquids. The required control circuit operates as follows: A. When the START button is pressed, solenoids A and B energize. This permits the two liquids to begin filling the tank. B. When the tank is filled, the float switch trips. This de-energizes solenoids A and B and starts the motor used to mix the liquids together. C. The motor is permitted to run for 1 minute. After 1 minute has elapsed, the motor turns off and solenoid C energizes to drain the tank. D. When the tank is empty, the float switch de- energizes solenoid C. E. A STOP button can be used to stop the process at any point. F. If the motor becomes overloaded, the action of the entire circuit will stop. G. Once the circuit has been energized, it will continue to operate until it is manually stopped. Solution : A

What is Relay? How it Works? Types, Applications, Testing

 We use relays for a wide range of applications such as home automation, cars and bikes (automobiles), industrial applications, DIY Projects, test and measurement equipment, and many more. But what is Relay? How a Relay Works? What are the Applications of Relays? Let us explore more about relays in this guide. What is a Relay? A Relay is a simple electromechanical switch. While we use normal switches to close or open a circuit manually, a Relay is also a switch that connects or disconnects two circuits. But instead of a manual operation, a relay uses an electrical signal to control an electromagnet, which in turn connects or disconnects another circuit. Relays can be of different types like electromechanical, solid state. Electromechanical relays are frequently used. Let us see the internal parts of this relay before knowing about it working. Although many different types of relay were present, their working is same. Every electromechanical relay consists of an consists of an Electroma

Chlorine dioxide Analyzer Principle

 Chlorine dioxide measurement Chlorine dioxide (ClO2) is an instable, non-storable, toxic gas with a characteristic scent. The molecule consists of one chlorine atom and two oxygen atoms – represented in the chemical formula ClO2. It is very reactive. To avoid the risk of spontaneous explosions of gaseous chlorine dioxide or concentrated solutions, it is generally handled in dilution with low concentrations. ClO2 is soluble in water, but tends to evaporate quickly. Typically it is prepared on site, for example from hydrochloric acid and sodium chlorite. The procedure provides solutions with approx. 2 g/l ClO2 that can be safely handled and stored for several days. Image Credits : krohne Sensor Parts : Reference electrode Applied chlorine dioxide specific potential Current needed to maintain the constant potential Counter electrode Measuring electrode The disinfection effect of ClO2 is due to the transfer of oxygen instead of chlorine, so that no chlorinated byproducts are formed. ClO2