Skip to main content

Smart Transmitter Calibration Tutorial Part 3

 Transmitter Output Current Trim (Analog Trim)

It is rare for the analog output current circuitry of a 4-20 mA transmitter to drift. However, should the analog output current be incorrect, use current trim to correct the analog output signal. For instance, if the analog output current is 4.13 mA when it should be 4.00 mA, then current trim is used to adjust it to 4 mA.

Current trim is used to match the transmitter analog output current to the current input of the analog input (AI) card channel on the DCS.

For instance, the transmitter may be reading 0.00% but the DCS may show 0.13% because of differences in current calibration. The DCS may not support current trim of channels in the AI and AO cards. If there is drift in the DCS input circuitry A/D conversion or D/A conversion and output circuitry, current trim has to be done in each device instead.

Current trim is only applicable to transmitter with 4-20 mA analog output. That is, for 4-20 mA/HART transmitters, not for FOUNDATION fieldbus (FF), PROFIBUS-PA, or WirelessHART transmitters, the reason being pure digital transmitters have no 4-20 mA analog output.

Current trim requires the technician to measure the physical output current from the transmitter. Therefore the technician must either do current trim in the field at the process location by connecting a multimeter to the transmitter test terminals, or the transmitter has to be brought back into the workshop to perform current trim. Current trim in the field is possible using a handheld communicator.

Smart Transmitter Trim Quick Reference

The difference between sensor trim, range setting, and current trim are summarized in the table below:


* Range setting in transmitter with digital output only done for DP-flow and DP-level measurement


Range Values and Limit Summary 

The relationship between range values and limits are summarized in the table below

Valve Positioner Setpoint Current Trim 
Similarly, it is rare for the setpoint input current circuitry of a 4-20 mA positioner to drift. However, should the input current sensing be incorrect, use current trim to correct the input signal. For instance, if the current input reads 4.13 mA when it should read 4.00 mA, then current trim is used to adjust it so that the setpoint reads correctly.

Current trim is used to match the positioner current input to the analog output current of the analog output (AO) card channel on the DCS. For instance, the DCS PID output may be 0.00% but the positioner setpoint may show 0.13% because of differences in current calibration.

Current trim is only applicable to positioners with 4-20 mA input. That is, for 4-20 mA/HART positioners, not for FOUNDATION fieldbus (FF) positioners, the reason being pure digital positioners have no 4-20 mA input.

Current trim requires the technician to connect a precision current source or to measure the physical input to the positioner.

Therefore the technician must either do current trim in the field at the valve by connecting a multimeter to the positioner test terminals, or the valve has to be brought back into the workshop to perform current trim. Current trim in the field is possible using a handheld communicator.

Valve Positioner Travel Stroking (Position Feedback Sensor Trim) 
Stroking a valve positioner to find its fully opened and fully closed positions is in fact an automated procedure to among other things trim (calibrate) the position transmitter feedback sensor.

That is, it is just like sensor trim for a pressure or temperature transmitter, only that a known reference need not be connected, the positioner will automatically stoke the valve over its full travel to discover the open and closed end-positions.

Likewise, the analog 4-20 mA actual valve position feedback current output of a 4-20 mA positioner is calibrated just like a 4-20 mA transmitter.

Again, this process is not required for FOUNDATION fieldbus positioners or for position feedback transmitters based on WirelessHART.

Sensor Trim Procedure 
Plants have a great mix of transmitters for different kinds of measurements from different manufacturers. Since all sensors drift, at some point in time all sensors need a trim. The procedure for calibration depends on the type of transmitter:

Pressure transmitter: apply pressure from calibrator or dead weight tester or the manifold can be equalized for zero trim
Temperature transmitter: apply milli-voltage or resistance from calibrator or resistance decade box
Flowmeter: has to be calibrated against a prover or master meter
Valve position transmitter: stroke the valve fully opened and fully closed
pH transmitter: put the pH sensor in buffer solutions
The procedure for sensor trim may also vary slightly from one manufacturer to the next depending on the requirement for the particular sensor technology.

Some calibration is easier in the workshop, such as pH sensor buffering where the pH sensor has to be put into with buffer solutions and distilled water. This is easier in the lab.

Smart pH sensors have a memory chip inside making it possible to calibrate the sensor in the lab and bring it to the field, carrying the calibration offset and slope data inside its memory chip. Once connected, the pH transmitter/analyzers upload the calibration data from the sensor memory.

Sensor Zero Trim Calibration
Typical steps in a sensor zero trim calibration for a pressure transmitter are: (Assume HART operating from Remote System)
  • Instruct technician to tell operations to put the associated control loop in manual so control is not upset when PV changes when sensor reading changes.
  • inform the technician the sensor reading will change.
  • Instruct the technician to apply zero physical input (e.g. by isolate, equalize, and vent the manifold).
  • Instruct the technician to wait while the sensor reading stabilizes and is corrected by the transmitter.
  • Inform the technician the zero sensor trim was successful.
  • Instruct technician to tell operations the associated control loop can be put back in automatic.
Article Source : Eddl





Comments

Popular posts from this blog

PLC Program for Mixing Tank

 Create a ladder diagram for controlling a batch mixing process. Implement a PLC program for mixing tank or Mixing Process using PLC Ladder Logic. PLC Program for Mixing Tank Fig : Mixing tank A tank is used to mix two liquids. The required control circuit operates as follows: A. When the START button is pressed, solenoids A and B energize. This permits the two liquids to begin filling the tank. B. When the tank is filled, the float switch trips. This de-energizes solenoids A and B and starts the motor used to mix the liquids together. C. The motor is permitted to run for 1 minute. After 1 minute has elapsed, the motor turns off and solenoid C energizes to drain the tank. D. When the tank is empty, the float switch de- energizes solenoid C. E. A STOP button can be used to stop the process at any point. F. If the motor becomes overloaded, the action of the entire circuit will stop. G. Once the circuit has been energized, it will continue to operate until it is manually stopped. Solution...

Ferrules and Cross Ferruling

 Ferrules are identification labels provided for every wire terminations in an instrument, equipment, or electrical/instrumentation control panels. These tube-shaped sleeves can be inserted easily on each individual wire in a multi-core cable. In earlier days fixed digits/letters are used as ferrules, but now Instrumentation engineers/technicians prints out desired ferrules by using a ferrule printing machine. Typical Ferrule The numbers/ letters on the ferrules will be given as per the approved electrical hook up or loop diagrams. This helps technicians to easily identify a particular loop/wiring from a series of terminal blocks and to troubleshoot the desired terminal connection. Separate numbers on the ferrules distinguish the positive and negative polarities of wires, thus ensure the polarity protection of the instrument. Cross Ferruling  As a wire is connected on its both ends, it is quite useful to use a cross reference method for wire identification. Unlike normal ferru...

What is Relay? How it Works? Types, Applications, Testing

 We use relays for a wide range of applications such as home automation, cars and bikes (automobiles), industrial applications, DIY Projects, test and measurement equipment, and many more. But what is Relay? How a Relay Works? What are the Applications of Relays? Let us explore more about relays in this guide. What is a Relay? A Relay is a simple electromechanical switch. While we use normal switches to close or open a circuit manually, a Relay is also a switch that connects or disconnects two circuits. But instead of a manual operation, a relay uses an electrical signal to control an electromagnet, which in turn connects or disconnects another circuit. Relays can be of different types like electromechanical, solid state. Electromechanical relays are frequently used. Let us see the internal parts of this relay before knowing about it working. Although many different types of relay were present, their working is same. Every electromechanical relay consists of an consists of an Elect...