Skip to main content

Shunt Calibration of a Strain Gauge Load Cell

 Shunt calibration is the known electrical unbalancing of a strain gauge bridge by means of a fixed resistor that is placed, or “shunted,” across one leg of the bridge.

The Wheatstone Bridge used in strain gauge load cells are typically field-calibrated using the shunt calibration technique.

Shunt calibration is a method of periodically checking the gain or span of a signal conditioner, which is used in conjunction with a strain gauge based transducer, without exposing the transducer to known, traceable, physical input values.

If required, adjustments can then be made to the signal conditioner to insure accurate measurement results

A strain gauge bridge is “in balance” when the host mechanical structure is unloaded and unstressed.

As the host structure (diaphragm, bending beam, shear beam, column, etc.) is loaded or stressed, the Wheatstone Bridge becomes unbalanced, resulting in an output signal that is proportional to the applied load.

Fig : A Wheatstone Bridge circuit showing the location for connecting the appropriate shunt resistor for the purpose of simulating either a tension or compression input.

Shunt calibration stimulates the mechanical input to a transducer by unbalancing the bridge with a fixed resistor placed across, or in parallel with, one leg of the bridge.

For tension shunt calibration, the shunt resistor (RST) is shunted across the +excitation (+P) and +signal (+S) leg of the bridge.

For a compression shunt calibration, the shunt resistor (RSC) is shunted across the – excitation (-P) and +signal (+S) leg of the bridge.

Calibration Procedure :

Here are step-by-step instructions for shunt calibration of a strain gauge load cell.

1. Connect the transducer to an appropriate strain gauge signal conditioner and allow adequate time for the system to stabilize.

2. Apply a full-scale N.I.S.T. traceable, mechanical input (or load) to the transducer.

3. Adjust the signal conditioner’s gain or span controls, as required, to obtain a full-scale electrical output signal, and/or numeric display that represents the applied, mechanical input quantity.

4. Remove the mechanical input (or load).

5. Place a shunt calibration resistor across an appropriate leg of the Wheatstone Bridge (as discussed above).

6. Record the value of the signal conditioner’s output signal and/or numeric display. This value is the shunt calibration value, or equivalent load.

7. It is important to note that the shunt calibration value is specific for the particular shunt resistor used.This value, and the particular resistor, are now matched to the transducer and form the basis of the transferable shunt calibration.

Summary

Shunt calibration is accepted throughout the industry as means of periodic calibration of a signal conditioner and transducer between calibrations of known, applied, traceable, mechanical, input values.

Consequently, most all strain gauge transducer manufacturers collect and supply shunt calibration data, along with a shunt calibration resistor, as a standard feature.

Source : PCB Load & Torque Division

Comments

Popular posts from this blog

PLC Program for Mixing Tank

 Create a ladder diagram for controlling a batch mixing process. Implement a PLC program for mixing tank or Mixing Process using PLC Ladder Logic. PLC Program for Mixing Tank Fig : Mixing tank A tank is used to mix two liquids. The required control circuit operates as follows: A. When the START button is pressed, solenoids A and B energize. This permits the two liquids to begin filling the tank. B. When the tank is filled, the float switch trips. This de-energizes solenoids A and B and starts the motor used to mix the liquids together. C. The motor is permitted to run for 1 minute. After 1 minute has elapsed, the motor turns off and solenoid C energizes to drain the tank. D. When the tank is empty, the float switch de- energizes solenoid C. E. A STOP button can be used to stop the process at any point. F. If the motor becomes overloaded, the action of the entire circuit will stop. G. Once the circuit has been energized, it will continue to operate until it is manually stopped. Solution...

What is Relay? How it Works? Types, Applications, Testing

 We use relays for a wide range of applications such as home automation, cars and bikes (automobiles), industrial applications, DIY Projects, test and measurement equipment, and many more. But what is Relay? How a Relay Works? What are the Applications of Relays? Let us explore more about relays in this guide. What is a Relay? A Relay is a simple electromechanical switch. While we use normal switches to close or open a circuit manually, a Relay is also a switch that connects or disconnects two circuits. But instead of a manual operation, a relay uses an electrical signal to control an electromagnet, which in turn connects or disconnects another circuit. Relays can be of different types like electromechanical, solid state. Electromechanical relays are frequently used. Let us see the internal parts of this relay before knowing about it working. Although many different types of relay were present, their working is same. Every electromechanical relay consists of an consists of an Elect...

Chlorine dioxide Analyzer Principle

 Chlorine dioxide measurement Chlorine dioxide (ClO2) is an instable, non-storable, toxic gas with a characteristic scent. The molecule consists of one chlorine atom and two oxygen atoms – represented in the chemical formula ClO2. It is very reactive. To avoid the risk of spontaneous explosions of gaseous chlorine dioxide or concentrated solutions, it is generally handled in dilution with low concentrations. ClO2 is soluble in water, but tends to evaporate quickly. Typically it is prepared on site, for example from hydrochloric acid and sodium chlorite. The procedure provides solutions with approx. 2 g/l ClO2 that can be safely handled and stored for several days. Image Credits : krohne Sensor Parts : Reference electrode Applied chlorine dioxide specific potential Current needed to maintain the constant potential Counter electrode Measuring electrode The disinfection effect of ClO2 is due to the transfer of oxygen instead of chlorine, so that no chlorinated byproducts are formed. C...