Skip to main content

Proximity Transducer System Operation

 Proximity Transducer System provides an output voltage directly proportional to the distance between the probe tip and the observed conductive surface.

It is capable of both static (position) and dynamic (vibration) measurements, and is primarily used for vibration and position measurement applications on fluid-film bearing machines, as well as Keyphasor and speed measurement applications.

 Proximity Transducer System

Proximity Transducer Systems provide an electrical signal that represents the distance between a conductive surface and the probe tip of the system.

The Proximitor contains electronics that provide two functions:

  1. Generate a radio frequency (RF) signal using an oscillator circuit.
  2. Condition the RF signal to extract usable data using a demodulator circuit
When conductive material is present in the RF field, Eddy Currents flow in the surface of that material.

The penetration depth of the eddy currents depends on the material’s conductivity and permeability. 4140 steel penetration is around 0.003 inches (3 mils).
Once the probe is close enough to cause eddy currents to flow in a conductive material the RF signal is affected in two ways:

1. Amplitude is at a MINIMUM when distance (Gap) between probe and target material (Target) is at a MINIMUM. Maximum eddy current flow occurs.

2. Amplitude is at a MAXIMUM when distance (Gap) between probe and target material is at a MAXIMUM. Minimum eddy current flow occurs.
If the target is moving SLOWLY within the RF field, the signal amplitude INCREASES or DECREASES SLOWLY.

If the target is moving RAPIDLY within the RF field, the signal amplitude INCREASES or DECREASES RAPIDLY.

Oscillatory movement of the target causes the RF signal to modulate.

The demodulator circuit deals with slowly or rapidly changing signal amplitude in the same way. If the target is not oscillating, as might be the case with a thrust probe, the Proximitor output is a constant DC voltage, called the gap.

If the target is oscillating (gap changing slowly or rapidly) the Proximitors output is a varying DC voltage (AC) shown above by a sine wave. If the probe is observing a vibration, the Proximitor will provide both a DC (gap) and an AC (vibration) component in the output signal.

A typical system frequency response is from 0 Hz (DC) to 10 kHz. Newer transducer systems, such as the 3300XL proximity system have responses up to 12 kHz.

Verification of Proximity Probes
Probe response is verified by measuring and creating a calibration curve.

Problems that can cause proximity probes to be out of tolerance:

  • probe cable length
  • power supply voltage
  • crosstalk and sideview conditions
  • target size and material
Proximity Probe Used as a Keyphasor


Proximity Probes Installation

Source : Bently Nevada


Comments

Popular posts from this blog

PLC Program for Mixing Tank

 Create a ladder diagram for controlling a batch mixing process. Implement a PLC program for mixing tank or Mixing Process using PLC Ladder Logic. PLC Program for Mixing Tank Fig : Mixing tank A tank is used to mix two liquids. The required control circuit operates as follows: A. When the START button is pressed, solenoids A and B energize. This permits the two liquids to begin filling the tank. B. When the tank is filled, the float switch trips. This de-energizes solenoids A and B and starts the motor used to mix the liquids together. C. The motor is permitted to run for 1 minute. After 1 minute has elapsed, the motor turns off and solenoid C energizes to drain the tank. D. When the tank is empty, the float switch de- energizes solenoid C. E. A STOP button can be used to stop the process at any point. F. If the motor becomes overloaded, the action of the entire circuit will stop. G. Once the circuit has been energized, it will continue to operate until it is manually stopped. Solution : A

What is Relay? How it Works? Types, Applications, Testing

 We use relays for a wide range of applications such as home automation, cars and bikes (automobiles), industrial applications, DIY Projects, test and measurement equipment, and many more. But what is Relay? How a Relay Works? What are the Applications of Relays? Let us explore more about relays in this guide. What is a Relay? A Relay is a simple electromechanical switch. While we use normal switches to close or open a circuit manually, a Relay is also a switch that connects or disconnects two circuits. But instead of a manual operation, a relay uses an electrical signal to control an electromagnet, which in turn connects or disconnects another circuit. Relays can be of different types like electromechanical, solid state. Electromechanical relays are frequently used. Let us see the internal parts of this relay before knowing about it working. Although many different types of relay were present, their working is same. Every electromechanical relay consists of an consists of an Electroma

Chlorine dioxide Analyzer Principle

 Chlorine dioxide measurement Chlorine dioxide (ClO2) is an instable, non-storable, toxic gas with a characteristic scent. The molecule consists of one chlorine atom and two oxygen atoms – represented in the chemical formula ClO2. It is very reactive. To avoid the risk of spontaneous explosions of gaseous chlorine dioxide or concentrated solutions, it is generally handled in dilution with low concentrations. ClO2 is soluble in water, but tends to evaporate quickly. Typically it is prepared on site, for example from hydrochloric acid and sodium chlorite. The procedure provides solutions with approx. 2 g/l ClO2 that can be safely handled and stored for several days. Image Credits : krohne Sensor Parts : Reference electrode Applied chlorine dioxide specific potential Current needed to maintain the constant potential Counter electrode Measuring electrode The disinfection effect of ClO2 is due to the transfer of oxygen instead of chlorine, so that no chlorinated byproducts are formed. ClO2