Skip to main content

Orifice Plate Turndown ratio

 Why Orifice Plate is having a 3:1 Turndown Ratio in Practice?

It is a general practice in the differential type flow meter, using flow orifice plate as a flow element, to limit the using in a 3:1 to 4:1 turndown ratio. Where this general practice comes from?

Orifice Plate Turndown ratio


The limitation of the DP type flow meter using orifice isn’t comes from the beta ratio limitation of the flow orifice plate nor any other flow orifice plate dimension. The limitation is comes from the error reading caused by the un-linear relationship between the differential pressure across flow orifice plate and the calculated flow rate.

In simplify concept we can calculate the orifice flow rate by:

Qm = C x (Differential Pressure)^0.5
Where,
Qm : Flow rate
C : Meter Constant
Differential Pressure : differential pressure across flow orifice plate

From the above equation we know that the flow rate is proportional to the square root of the differential pressure. This un-linear relation produces a significant error in the lower flow when the turndown ratio is exceeding 3:1.

Basically the differential pressure transmitter it self can have a turndown ratio up to 100:1 but the square root extraction limits its capability in the upper range only.

See below calculation example that illustrates the increasing of error reading when the turndown ratio is below 3:1.
Home » Orifice Plate Turndown ratio
Flow Measurement
Orifice Plate Turndown ratio

 
Why Orifice Plate is having a 3:1 Turndown Ratio in Practice?
It is a general practice in the differential type flow meter, using flow orifice plate as a flow element, to limit the using in a 3:1 to 4:1 turndown ratio. Where this general practice comes from?

Orifice Plate Turndown ratio
Orifice Plate Turndown ratio

 
The limitation of the DP type flow meter using orifice isn’t comes from the beta ratio limitation of the flow orifice plate nor any other flow orifice plate dimension. The limitation is comes from the error reading caused by the un-linear relationship between the differential pressure across flow orifice plate and the calculated flow rate.

In simplify concept we can calculate the orifice flow rate by:

Qm = C x (Differential Pressure)^0.5
Where,
Qm : Flow rate
C : Meter Constant
Differential Pressure : differential pressure across flow orifice plate

From the above equation we know that the flow rate is proportional to the square root of the differential pressure. This un-linear relation produces a significant error in the lower flow when the turndown ratio is exceeding 3:1.

Basically the differential pressure transmitter it self can have a turndown ratio up to 100:1 but the square root extraction limits its capability in the upper range only.

See below calculation example that illustrates the increasing of error reading when the turndown ratio is below 3:1.

Example of Orifice Flow Meter Error Reading Calculation

From the above example, we know that the % error reading (after perform the above square root calculation) is increasing along with the flow rate decreasing. The % error reading is exceeding 0.5% when the flow rate is lower than 2500 l/m.

Let set this flow rate as our minimum flow rate since the flow rate measurement is having high error below this point. If we look further, the 2500 l/m minimum flow and 7500 l/m maximum flow is correspond to the 3:1 turndown ratio. This is where the 3:1 turndown ratio is applied in our general practices.

If we insist to have minimum flow let say 1000 l/m then we will have a turndown ratio 7.5:1. This will lead us to get an error reading of 2.8 % which means a very bad measurement accuracy.

Thus some engineer usually simply use a 3:1 turndown ratio as their rule of thumb to decide whether they will use DP type flow orifice plate flow meter or not.

If the required turn down is higher than 3:1, then it will be better if we use another type of flow meter even though it is possible to have such higher turn down ratio by installing a parallel DP type flow orifice plate flow meter with a split range configuration.

I don’t have any reason regarding this except the parallel configuration will give us a high cost of material procurement.


Comments

Popular posts from this blog

PLC Program for Mixing Tank

 Create a ladder diagram for controlling a batch mixing process. Implement a PLC program for mixing tank or Mixing Process using PLC Ladder Logic. PLC Program for Mixing Tank Fig : Mixing tank A tank is used to mix two liquids. The required control circuit operates as follows: A. When the START button is pressed, solenoids A and B energize. This permits the two liquids to begin filling the tank. B. When the tank is filled, the float switch trips. This de-energizes solenoids A and B and starts the motor used to mix the liquids together. C. The motor is permitted to run for 1 minute. After 1 minute has elapsed, the motor turns off and solenoid C energizes to drain the tank. D. When the tank is empty, the float switch de- energizes solenoid C. E. A STOP button can be used to stop the process at any point. F. If the motor becomes overloaded, the action of the entire circuit will stop. G. Once the circuit has been energized, it will continue to operate until it is manually stopped. Solution...

What is Relay? How it Works? Types, Applications, Testing

 We use relays for a wide range of applications such as home automation, cars and bikes (automobiles), industrial applications, DIY Projects, test and measurement equipment, and many more. But what is Relay? How a Relay Works? What are the Applications of Relays? Let us explore more about relays in this guide. What is a Relay? A Relay is a simple electromechanical switch. While we use normal switches to close or open a circuit manually, a Relay is also a switch that connects or disconnects two circuits. But instead of a manual operation, a relay uses an electrical signal to control an electromagnet, which in turn connects or disconnects another circuit. Relays can be of different types like electromechanical, solid state. Electromechanical relays are frequently used. Let us see the internal parts of this relay before knowing about it working. Although many different types of relay were present, their working is same. Every electromechanical relay consists of an consists of an Elect...

Chlorine dioxide Analyzer Principle

 Chlorine dioxide measurement Chlorine dioxide (ClO2) is an instable, non-storable, toxic gas with a characteristic scent. The molecule consists of one chlorine atom and two oxygen atoms – represented in the chemical formula ClO2. It is very reactive. To avoid the risk of spontaneous explosions of gaseous chlorine dioxide or concentrated solutions, it is generally handled in dilution with low concentrations. ClO2 is soluble in water, but tends to evaporate quickly. Typically it is prepared on site, for example from hydrochloric acid and sodium chlorite. The procedure provides solutions with approx. 2 g/l ClO2 that can be safely handled and stored for several days. Image Credits : krohne Sensor Parts : Reference electrode Applied chlorine dioxide specific potential Current needed to maintain the constant potential Counter electrode Measuring electrode The disinfection effect of ClO2 is due to the transfer of oxygen instead of chlorine, so that no chlorinated byproducts are formed. C...