Skip to main content

Impact of Flow Meter Accuracy

 When discussing about flow metering, a number of terms are important to consider, which include Repeatability, Uncertainty, Accuracy and Turndown, are commonly used.

Repeatability

This describes the ability of a flow meter to indicate the same value for an identical flow rate on more than one occasion.

It should not be confused with accuracy i.e. its repeatability may be excellent in that it shows the same value for an identical flow rate on several occasions, but the reading might be consistently wrong (or inaccurate).

Good repeatability is important. However, this does not dilute the importance of accuracy under any circumstances.


Uncertainty

The term ‘uncertainty’ is now becoming more commonly referred to than accuracy.

This is because accuracy cannot be established, as the true value can never be exactly known.

However ‘uncertainty’ can be estimated and an ISO standard exists offering guidance on this matter (EN ISO/IEC 17025).

It is important to recognise that it is a statistical concept and not a guarantee.

For example, it may be shown that with a large population of flow meters, 95% would be at least as good as the uncertainty calculated. Most would be much better, but a few, 5% could be worse.

Accuracy

This is a measure of a flow meter’s performance when indicating a correct flow rate value against a ‘true’ value obtained by extensive calibration procedures. The subject of accuracy is dealt with in ISO 5725.

The following two methods used to express accuracy have very different meanings:

Percentage of measured value or actual reading

For example, a flow meter’s accuracy is given as ±3% of actual flow.

At an indicated flow rate of 1000 kg/h, the ‘uncertainty’ of actual flow is between:

1000 – 3% = 970 kg/h

And

1000 + 3% = 1 030 kg/h

Similarly, at an indicated flow rate of 500 kg/h, the error is still ±3%, and the ‘uncertainty’ is between:

500 kg/h – 3% = 485 kg/h

And

500 kg/h + 3% = 515 kg/h

Percentage of full scale deflection (FSD)

A flow meter’s accuracy may also be given as a percentage of full scale deflection FSD, which means that the measurement error is expressed as a percentage of the maximum flow that the flow meter can handle.

Error stated in percentage FSD tends to be smaller than the error as a percentage of actual reading.

For this example a value of ±0.3% FSD will be used.

As in the previous case, the maximum flow = 1000 kg/h.

At an indicated flowrate of 1000 kg/h, the ‘uncertainty’ of actual flow is between:

1000 kg/h – 0.3% = 997 kg/h

And

1000 kg/h + 0.3% = 1003 kg/h

At an indicated flowrate of 50 kg/h, the error is still ±3 kg/h, and the actual flow is between:

50 kg/h – 3 kg/h = 47 kg/h an error of – 6%

And

50 kg/h + 3 kg/h = 53 kg/h an error of +6%

As the flowrate is reduced, the percentage error increases.

Flow Meter Accuracy

A comparison of these measurement terms is shown graphically in Figure 

Comments

Popular posts from this blog

PLC Program for Mixing Tank

 Create a ladder diagram for controlling a batch mixing process. Implement a PLC program for mixing tank or Mixing Process using PLC Ladder Logic. PLC Program for Mixing Tank Fig : Mixing tank A tank is used to mix two liquids. The required control circuit operates as follows: A. When the START button is pressed, solenoids A and B energize. This permits the two liquids to begin filling the tank. B. When the tank is filled, the float switch trips. This de-energizes solenoids A and B and starts the motor used to mix the liquids together. C. The motor is permitted to run for 1 minute. After 1 minute has elapsed, the motor turns off and solenoid C energizes to drain the tank. D. When the tank is empty, the float switch de- energizes solenoid C. E. A STOP button can be used to stop the process at any point. F. If the motor becomes overloaded, the action of the entire circuit will stop. G. Once the circuit has been energized, it will continue to operate until it is manually stopped. Solution...

Ferrules and Cross Ferruling

 Ferrules are identification labels provided for every wire terminations in an instrument, equipment, or electrical/instrumentation control panels. These tube-shaped sleeves can be inserted easily on each individual wire in a multi-core cable. In earlier days fixed digits/letters are used as ferrules, but now Instrumentation engineers/technicians prints out desired ferrules by using a ferrule printing machine. Typical Ferrule The numbers/ letters on the ferrules will be given as per the approved electrical hook up or loop diagrams. This helps technicians to easily identify a particular loop/wiring from a series of terminal blocks and to troubleshoot the desired terminal connection. Separate numbers on the ferrules distinguish the positive and negative polarities of wires, thus ensure the polarity protection of the instrument. Cross Ferruling  As a wire is connected on its both ends, it is quite useful to use a cross reference method for wire identification. Unlike normal ferru...

What is Relay? How it Works? Types, Applications, Testing

 We use relays for a wide range of applications such as home automation, cars and bikes (automobiles), industrial applications, DIY Projects, test and measurement equipment, and many more. But what is Relay? How a Relay Works? What are the Applications of Relays? Let us explore more about relays in this guide. What is a Relay? A Relay is a simple electromechanical switch. While we use normal switches to close or open a circuit manually, a Relay is also a switch that connects or disconnects two circuits. But instead of a manual operation, a relay uses an electrical signal to control an electromagnet, which in turn connects or disconnects another circuit. Relays can be of different types like electromechanical, solid state. Electromechanical relays are frequently used. Let us see the internal parts of this relay before knowing about it working. Although many different types of relay were present, their working is same. Every electromechanical relay consists of an consists of an Elect...