Skip to main content

Flow Meter K-factor and Calculations

 Flow Meter K-factor :

The axial design of Turbine Flow Meter is inherently linear within a known turndown range, typically 15:1, based on velocity of the measured fluid.

The device has unmatched capability of precise and repeatable K-Factor generation based on the turning of the balanced rotor and the subsequently generated frequency pulse signal via the magnetic coil assembly, providing accuracy of +/-.15% with special calibration applied.

Each pulse generated represents a discrete amount of volumetric throughput. Dividing the total number of pulses generated by the specific amount of liquid product that passed through the PTF determines the K-Factor.

Put in the simplest of terms, K-Factor is no more complicated than understanding that the meter will generate a specific number of pulses for every unit of product passing through it. If the user can detect the pulses, then it is a straightforward task to determine flow rate and totals.

The K-Factor, expressed in pulses per unit volume, may be used to electronically provide an indication of volumetric throughput directly in engineering units.

Mass flow can be accomplished by the addition of pressure and temperature sensors that are factored electronically. The electronic device continuously divides the incoming pulses by the K-Factor, or multiplies them with the inverse of the K-Factor, to provide factored totalization, rate indication, and various outputs.

The frequency of the pulse output, or number of pulses per unit time, is directly proportional to the rotational rate of the turbine rotor.

Therefore, this frequency of the pulse output is proportional to the rate of the flow.

By dividing the pulse rate by the K-Factor, the volumetric throughput per unit time of the rate of flow can be determined.

Standard electronic devices are commonly used to provide instantaneous totalization and flow rate indication.

Plotting the electrical signal output versus flow rate provides the characteristics profile or calibration curves for the PTF.

Although the concept of K-Factor is applied widely with other types of meters, it should be noted that this value is calculated from analog values in other meters where a magnetic coil assembly reading a turning rotor is not used.

This calculation has built-in error factors based on a relatively imprecise primary input coupled with conversions from analog frequency and sometimes back to analog for transmission purposes.

Calculations Using K-Factors

1. What is a K-factor

Simply stated a K-factor is a dividing factor. The term is usually encountered when dealing with pulse signals although analog K-factors are sometimes used.

2. Pulse Signal K-factors

All pulse output type flow meters when they are dispatched by their manufacturer will have a calibration certificate.

The calibration certificate will show that the meter has been calibrated over its flow range and noted on the certificate will be the average K-factor for the meter.

This K-factor will be given in terms of the number of pulses produced by the meter for a given volumetric flow. (e.g.) 200 pulses per U.S. gallon, 150 pulses per liter etc.

This K-factor is the value that is entered into a batch meter or indicator/totalizer in order to give a readout in engineering units.

Example 1

If the display on a rate meter is required in U.S. gallons per second, and the K-factor of the flow meter is 210 pulses per U.S. gallon, then the K-factor entered into the rate meter would be 210.

If a totalizer associated with the same flow meter was to be set up so as to totalize in U.S. gallons the totalizer K-factor would be 210.

If the totalizer was to be set to totalize in tenths of a gallon the K-factor would be 210/10 = 21

Example 2

If the display on a rate meter is required in U.S. gallons per minute, and the K-factor of the flow meter is 210 pulses per U.S. gallon, then the K-factor entered into the rate meter would be: 210/60 = 3.5

3. K-factors for Analog Input Signals

When batching, indication or totalization has to be carried out using an analog input signal a flow meter first converts the 4 to 20 mA signal into a 0 to 10000 Hz. signal.

The K-factor is then calculated by relating the engineering unit equivalent of 20 mA to the 10000 Hz. signal.

Example 3

A vortex meter outputs 20 mA when the flow is 2000 U.S. gallons per minute, we wish to display the rate in gallons per minute. The rate K-factor is = 10000/2000 = 5

The value of the totalizer K-factor will depend on whether the flow rate was given in units per second, minute or hour and whether it is desired to totalize in whole units, tenths, hundredths etc.

If the flow rate was given in units per second the totalizer K-factor (for whole units) is obtained by multiplying the rate K-factor by 1.

If the flow rate was given in units per minute the totalizer K-factor (for whole units) is obtained by multiplying the rate K-factor by 60.

If the flow rate was given in units per hour the totalizer K-factor (for whole units) is obtained by multiplying the rate K-factor by 3600.

The totalizer K-factor in example 3 will be = 5 x 60 = 300 in order to totalize in gallons.

If we wished to totalize in tenths of a gallon the K-factor would be 5 x 60/10 = 30

Example 4

An electromagnetic flow meter outputs 20 mA when the flow is 20 liters per second, we wish to display the flow rate in liters per second and totalize in M³.

The rate K-factor is 10000/20 = 500

The totalizer K-factor will be 500 x 1/0.001 = 500000

4. Multi-Point K-factors

Some flow applications dictate that multiple K-factors are used. Two applications that require multiple K-factors are:

flow meters with non linear outputs

wide turndown flow applications

Some Flow meters have an option available that allows the user to input from 3 to 16 K-factors.

This multi-point K-factor option is available for both pulse and analog inputs.

5. Multi-Point K-factors for Pulse inputs

The first step is to calculate K-factors to cover each flow range. This is done by taking the information on the flow meter manufacturer’s calibration sheet and calculating the K-factors.

An alternative to using the manufacturers’ data is to conduct tests on site against a calibrated standard.

The second step is to relate an incoming frequency range from the flow meter to a given calculated K-factor.

The final step is to program these values into the instrument.

Example 5

A turbine flow meter has the following calibration data.

From the above calibration sheet data we can relate the incoming frequency to the K-factor as follows.
The 16 point K-factor would be programmed as follows.
Note that because the K-factor for the last two points are the same, any frequency higher than 43.67 Hz will be modified by a K-factor of 52.4 The set up is now complete.

6. Multi Point K-factors for Analog Inputs
The procedure for analog inputs is essentially the same as for pulse inputs.

The first step is to calculate K-factors to cover each flow range. This is done by taking the information on the flow meter manufacturer’s calibration sheet and calculating the K-factors.

An alternative to using the manufacturer’s data is to conduct tests on site against a calibrated standard.

The second step is to relate an incoming flow value from the flow meter to a given calculated K-factor.

The final step is to program these values into the instrument.

Example 6
A vortex flow meter has the following calibration data.

Base K-factor 10000/100 = 100

Using the MASStrol as an example the K-factors would be programmed as follows.

Note that the point after the final one should have a flow value entered that is very much higher than the true maximum flow rate of the meter.

Note also that as the last two K-factors are the same any flow above 100 gpm will be modified by a K-factor of 104. The setup is now complete.

Credits : Sponsler & Kessler-Ellis (KEP)







Comments

Popular posts from this blog

Ferrules and Cross Ferruling

 Ferrules are identification labels provided for every wire terminations in an instrument, equipment, or electrical/instrumentation control panels. These tube-shaped sleeves can be inserted easily on each individual wire in a multi-core cable. In earlier days fixed digits/letters are used as ferrules, but now Instrumentation engineers/technicians prints out desired ferrules by using a ferrule printing machine. Typical Ferrule The numbers/ letters on the ferrules will be given as per the approved electrical hook up or loop diagrams. This helps technicians to easily identify a particular loop/wiring from a series of terminal blocks and to troubleshoot the desired terminal connection. Separate numbers on the ferrules distinguish the positive and negative polarities of wires, thus ensure the polarity protection of the instrument. Cross Ferruling  As a wire is connected on its both ends, it is quite useful to use a cross reference method for wire identification. Unlike normal ferru...

PLC Program for Mixing Tank

 Create a ladder diagram for controlling a batch mixing process. Implement a PLC program for mixing tank or Mixing Process using PLC Ladder Logic. PLC Program for Mixing Tank Fig : Mixing tank A tank is used to mix two liquids. The required control circuit operates as follows: A. When the START button is pressed, solenoids A and B energize. This permits the two liquids to begin filling the tank. B. When the tank is filled, the float switch trips. This de-energizes solenoids A and B and starts the motor used to mix the liquids together. C. The motor is permitted to run for 1 minute. After 1 minute has elapsed, the motor turns off and solenoid C energizes to drain the tank. D. When the tank is empty, the float switch de- energizes solenoid C. E. A STOP button can be used to stop the process at any point. F. If the motor becomes overloaded, the action of the entire circuit will stop. G. Once the circuit has been energized, it will continue to operate until it is manually stopped. Solution...

What is a Torbar? – Averaging Pitot Tubes

 The Torbar is employed for flow measurement of liquids, gases, or steam in circular, square, or rectangular section ducts for large flow rates. The Torbar is an insertion type multi-port self-averaging primary sensor for flow measurement. Torbar TORBAR is a set of Pitot tubes mounted on a bar across the pipeline with no moving parts. An averaging Pitot tube is a technology, while TORBAR is a manufacturing brand name. There are several brands available in the market with VERABAR, ANNUBAR, etc. Averaging Pitot Tube Principle Purpose Averaging Pitot tube can be employed when the average velocity of the flow profile, rather than the velocity in a specific point in the cross-section is desired. Averaging Pitot Tubes Principle It measures the differential pressure between the static pressure tap and the tap of full pressure of a stream. Thus such magnitude of differential pressure is directly proportional to the square of the flow rate. Working The TORBAR is designed in such a way that ...