Skip to main content

Calculate Flow Coefficient Kv of Solenoid Valve

 Flow Coefficient Kv

DEFINITION KV-VALUE: AMOUNT OF FLOW (M3/HOUR) OF WATER OF 20°C IN A VALVE WITH A PRESSURE LOSS OF 1 BAR.


The amount of flow of a fluid through a (solenoid) valve can easily be calculated with flow coefficient Kv. Please note that for gases (e.g. air) a different formula is used (see correction factor gases below).


The Kv-value expresses the flow rate of water in m3/hour in a valve with a pressure loss of 1 bar and a temperature of 20°C. Pay attention that the Kv-value is expressed in m3/hour, while the kv-value (lowercase!) is expressed in l/min.


To calculate the flow rate the following formula is used:


where:

Q = flow rate of liquid (m3/hour)

Kv = flow coefficient (m3/hour)

SG = Specific Gravity (=1 for water)

dp = pressure differential over the valve (bar)

The Kv-value of a valve is determined by a standardized test according to VDI/VDE 2173. For this purpose a test set-up is used, such as shown in the following schematic drawing:

Cv & Kv Relation :
Sometimes, the Cv value is given instead of the Kv value. The Cv value can be converted to the Kv-value with a conversion factor:

Cv = 1.16 Kv
Kv = 0.853 Cv
The diagram below is a nice tool to simplify the conversion between the different coefficients. The conversion factor between two coefficients is indicated with arrows.

Kv (with a capital K) expresses the flow rate in m3/hour, kv (lowercase) in l/min.

Valves In Parallel:
If several valves are connected in parallel, the Kv value can be determined simply by adding up all Kv values.

Correction Factor For Gases
When using gases, a different formula for the flow rate should be used. Also, a distinction between subsonic and supersonic flows is made. “Qn” indicates that the formula is valid for standard conditions (20°C).

The flow rate is expressed in Nm3/h (Normal cubic metre per hour).
Where:

dP = pressure loss (bar)
*Kv = flow coefficient (m3/hour)
*p1 and p2 are respectively the absolute inlet and outlet pressure (bar)
*? = specific gravity at standard conditions (20°C) in kg/m3
*T = absolute temperature in Kelvin (0K = -273.15°C)
Example

Consider a circuit with a solenoid valve with an inlet pressure (water) of 5 bars. The required flow rate is at least 5 litres per minute. The maximum allowed pressure loss is 1 bar, therefore the outlet pressure is minimally 4 bars. What is the minimum required Kv-value?

The Kv-value must be at least 0.3.







Comments

Popular posts from this blog

PLC Program for Mixing Tank

 Create a ladder diagram for controlling a batch mixing process. Implement a PLC program for mixing tank or Mixing Process using PLC Ladder Logic. PLC Program for Mixing Tank Fig : Mixing tank A tank is used to mix two liquids. The required control circuit operates as follows: A. When the START button is pressed, solenoids A and B energize. This permits the two liquids to begin filling the tank. B. When the tank is filled, the float switch trips. This de-energizes solenoids A and B and starts the motor used to mix the liquids together. C. The motor is permitted to run for 1 minute. After 1 minute has elapsed, the motor turns off and solenoid C energizes to drain the tank. D. When the tank is empty, the float switch de- energizes solenoid C. E. A STOP button can be used to stop the process at any point. F. If the motor becomes overloaded, the action of the entire circuit will stop. G. Once the circuit has been energized, it will continue to operate until it is manually stopped. Solution : A

What is Relay? How it Works? Types, Applications, Testing

 We use relays for a wide range of applications such as home automation, cars and bikes (automobiles), industrial applications, DIY Projects, test and measurement equipment, and many more. But what is Relay? How a Relay Works? What are the Applications of Relays? Let us explore more about relays in this guide. What is a Relay? A Relay is a simple electromechanical switch. While we use normal switches to close or open a circuit manually, a Relay is also a switch that connects or disconnects two circuits. But instead of a manual operation, a relay uses an electrical signal to control an electromagnet, which in turn connects or disconnects another circuit. Relays can be of different types like electromechanical, solid state. Electromechanical relays are frequently used. Let us see the internal parts of this relay before knowing about it working. Although many different types of relay were present, their working is same. Every electromechanical relay consists of an consists of an Electroma

Chlorine dioxide Analyzer Principle

 Chlorine dioxide measurement Chlorine dioxide (ClO2) is an instable, non-storable, toxic gas with a characteristic scent. The molecule consists of one chlorine atom and two oxygen atoms – represented in the chemical formula ClO2. It is very reactive. To avoid the risk of spontaneous explosions of gaseous chlorine dioxide or concentrated solutions, it is generally handled in dilution with low concentrations. ClO2 is soluble in water, but tends to evaporate quickly. Typically it is prepared on site, for example from hydrochloric acid and sodium chlorite. The procedure provides solutions with approx. 2 g/l ClO2 that can be safely handled and stored for several days. Image Credits : krohne Sensor Parts : Reference electrode Applied chlorine dioxide specific potential Current needed to maintain the constant potential Counter electrode Measuring electrode The disinfection effect of ClO2 is due to the transfer of oxygen instead of chlorine, so that no chlorinated byproducts are formed. ClO2